
LLNL-PROC-648316

On the Structure of Self-Similar
Detonation Waves in TNT
Charges

A. L. Kuhl, K. Balakrishnan, J. B. Bell, V. E.
Beckner

January 7, 2014

35th International Combsution Symposium
San Francisco, CA, United States
August 3, 2014 through August 8, 2014



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



35rd International Combustion Symposium-2014                                                                 PROCI-D-13-00752 
COLLOQUIUM: Detonations, Explosions & Supersonic Combustion 
 
 

1 

 
On the Structure of Self-Similar Detonation Waves in TNT Charges 

 
Allen L. Kuhl1, Kaushik Balakrishnan2, John B. Bell2 & Vincent E. Beckner2 

 
1 Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California USA 94551  
2Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, USA 94720 

 
 

 
___________________________________________________________________________________ 

ABSTRACT 

A phase plane method is proposed to model flow fields bounded by constant-velocity detonation waves 
propagating in TNT charges. Similarity transformations are used to formulate the problem in the phase 
plane of non-dimensional sound speed: Z versus non-dimensional velocity: F. The formulation results in 
two coupled ordinary differential equations that are solved simultaneously. The solution corresponds to 
an integral curve Z(F) in the phase plane, starting at the Chapman-Jouguet (CJ) point and terminating at 
singularity A—the sonic point within the wave. The system is closed by computing thermodynamic 
variables along the expansion isentrope passing through the CJ point—forming, in effect, the complete 
equation of state of the thermodynamic system. The CJ condition and isentropic states were computed 
by the thermodynamic code Cheetah. Solutions were developed for planar, cylindrical and spherical 
detonations. Species profiles were also computed; carbon graphite was found to be the predominant 
component (~10 moles/kg). The similarity solution was used to initialize a 1D gas-dynamic simulation 
that predicted the initial expansion of the detonation products and the formation of a blast wave in air. 
Such simulations provide insight into the thermodynamic states and species that create the initial optical 
emissions from TNT fireballs.                       197 words 
Keywords: detonation waves in TNT, phase-plane method, similarity solution, CJ conditions, species 
__________________________________________________________________________________ 

Nomenclature
Variables: 

temperature: T 
pressure: p 
relative energy: e 
absolute energy: u 
density:  
sound speed: a 
detonation velocity: W 
isentropic gamma:   
molar concentration of ith species:  
heat of detonation:  
radial velocity:  

radial coordinate:  
time: t 
flow area: A    
mass integral:  
energy integral:  

Non-dimensional variables: 
 
 

 
 

 

ρ

Γ ≡ ∂ ln p /∂ lnρ( )s
Ci

ΔHd

ur

r

M
E

Θ = T /TCJ
P = p / pCJ
E = e / eCJ
R = ρ / ρCJ
A = (a / aCJ )

2
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 for j = 2, 1, 0 
h = ρ / ρ0   
g = p / ρ0WCJ

2  
subscripts: 

Chapman-Jouguet state: CJ 
constant energy and volume: UV 
Reactants: R 
Products: P 
Standard Conditions (1 atm, 300 K): 0 

1. Introduction 

Application of similarity methods to model 
explosions has a long and prestigious history. In 
1941 Sir Geoffrey Taylor used a similarity 
variable to transform the partial differential 
equations of gas dynamics to the ordinary 
differential equations of blast wave theory [1], 
[2]. He used an equation of state for the TNT 
detonation products as developed by Jones and 
Miller [3]. He computed the pressure and 
velocity profiles behind the detonation front for 
planar and spherical waves [1], [2]; he showed 
for the first time, that in velocity was quiescent 
(zero) for the inner half of the detonation wave. 
He published additional studies of TNT 
detonations in the 1958 Princeton series on 
high-speed aerodynamics [2]. This similarity 
approach was formalized as the Phase Space 
Method by Academician Leonid Ivanovich 
Sedov in 1958 in his monograph Similarity and 
Dimensional Analysis in Mechanics [4]; he 
applied it to a wide variety of explosion and 
implosion problems. In 1960 Stanyukovich used 
similarity methods to model the escape 

detonation products into a vacuum [5]; the 
products were modeled by an isentropic power 
law (Γ = 3 ). G. I. Barenblatt has developed 
scaling methods [6] and extended the similarity 
method to the intermediate asymptotics regime 
[7]. A general description of the theory of 
detonation waves can be found in the treatise by 
Academician Yacob Borisovich Zel’dovich and 
Kompaneets [8]. A recent comprehensive 
review can be found in John Lee’s book The 
Detonation Phenomenon [9]. 
Similarity methods enjoyed perhaps their 
greatest popularity in modeling explosions in 
gases—rather than solids1. Oppenheim and co-
workers used the Phase Space Method to derive 
all possible solutions bounded by a strong shock 
[10] or a strong detonation [11], detonations 
with variable energy at the front [12], pressure 
waves generated by steady flames [13] and blast 
waves in exponential atmospheres [14]. 
In this paper we develop a Phase Space Model 
for detonation waves in solids that 
accommodates a thermodynamically complete 
model of TNT detonation products based on the 
Cheetah thermodynamic code of Fried [15]. The 
thermodynamic properties of TNT are described 
in §2; the phase plane model is presented in §3; 
results are put forth in §4, including species 
profiles; this is followed by §5-Discussion and 
§6-Conclusions. 

2. Thermodynamics of TNT detonations 

The energetics of TNT detonation products are 
described by the locus of states in the Le 
Chatelier plane of specific internal energy: u 
versus temperature: T (see Fig. 1). The locus 
starts at the Chapman-Jouguet point: CJ and 
expands down the isentrope to 300 K; both the 

                                                
1 This is due to the fact gases can be accurately modeled 
as having a constant ratio of specific heats: , while 
detonation products from solid explosives require more 
complicated equations of state (e.g., JWL model) which 
have been outside the scope of the formulation of most 
similarity methods. 

G = Γ /ΓCJ

F ≡ ur / xWCJ

Z ≡ a2 / x2WCJ
2

U ≡ ur / uCJ = xF / FCJ
x ≡ r / rCJ
j ≡ d lnA / d ln r = 0, 1, 2
D = Z − (1−F)2

kj = 4π, 2π  and 1

γ
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locus and the CJ condition itself were predicted 
by the Cheetah code.  
 

 
Figure 1. Le Chatelier diagram showing the 
expansion of TNT products from the CJ point to 
zero temperature. Note that the absolute and 
relative energy scales are related by
e ≡ u+1,131 cal / g . The solution also illustrates 
the energy jump condition across the detonation 
front: eCJ ≡ e0 + ΔHd +Ω ; here Ω =WCJ

2 / 2(Γ+1)2  
represents the kinetic-energy flux across the 
front. 
 
The computed points (circles) are accurately fit 
with a piece-wise quadratic functions: 
ui (T ) = aiT

2 + biT + ci  as shown in Fig. 1. Fitting 
constants are listed in Table 1. In Fig. 1, the 
fundamental energy variable is u, which 
represents the absolute specific internal energy 
(that includes the heats of formation of the TNT 
molecules). On this scale, the Reactants and 
Products energies at 300 K are uR

0 = −66.5cal / g  
and uP

0 = −1,079.3cal / g , respectively. Their 
difference represents the heat of detonation: 
ΔHd ≡ uR

0 −uP
0 =1,012.8cal / g . This value is in 

good agreement the heat of detonation of TNT: 
1,093±1 cal / g  cal/g (for ρ0 =1.533 g / cc ) as 
measured by Ornellas in bomb calorimeter 
experiments [16]. On this scale, the value of 
energy at zero temperature is 
u(0) = −1,131cal / g , indicating that the DP 
gases retain energy of e0 = 52cal / g  at room 
temperature. Figure 1 has an auxiliary energy 
scale: e that has the property that energy is zero 
at zero temperature. It is related to the absolute 
energy scale by: e ≡ u+1,131 . Also shown in 
Fig. 1 is the detonation at constant energy and 
volume, denoted by point UV. On the e energy 
scale, the heat of detonation is: 
ΔHd ≡ eUV − e0 =1,012.8cal / g . The 
enhancement from UV point to the CJ point is 
caused by the kinetic energy flux across the 
detonation front: Ω =WCJ

2 / 2(Γ+1)2 = 340cal / g
, where WCJ  is the detonation wave velocity. 
One sees that the energy at the CJ point equals 
273.2 cal/g and 1,404.8 cal/g on the absolute 
and the auxiliary energy scales, respectively. 
Thus, the energy characteristics of the TNT 
products gases are completely characterized by 
the Le Chatelier diagram of Fig. 1. 
Other thermodynamic variables were also 
calculated along the CJ isentrope; they were 
non-dimensionalized by their values at the CJ 
point: Temperature: Θ = T /TCJ ; pressure: 
P = p / pCJ ; energy: E = e / eCJ ; density: 
R = ρ / ρCJ ; sound speed:A = (a / aCJ )

2 ; and 
isentropic exponent: G = Γ /ΓCJ  (see Table 2 
for the CJ values). Their inter-relationship is 
illustrated in Fig. 2 as a function of density 
ratio: R2 along the CJ isentrope. We emphasize 
that this thermodynamic solution is general 
(e.g., devoid of any constant Γ  assumptions, 
etc.). It is found by minimizing the Gibbs free 

                                                
2 The choice of R as the ordinate is appropriate because R 
will be shown to be one of the two dependent variables of 
the present phase plane model formulation, as shown in 
§3. 
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energy of the thermodynamic system for TNT. 
Thus by construction, it automatically satisfies 
the First Law of Thermodynamics along the CJ 
isentrope. Under such circumstances, use of the 
energy conservation law of gas dynamics 
becomes redundant (superfluous). 

 
Figure 2. Non-dimensional relationship between 
thermodynamic variables along the CJ isentrope        
( SCJ =1.58cal / g−K ) for TNT. 
 
The corresponding species concentrations in the 
TNT detonation products are presented in Fig. 3 
as a function of temperature. One can see that 
carbon graphite is the predominant component, 
followed by carbon monoxide and dioxide, 
diatomic nitrogen, water and methane. This 
solution: Ci = fi (T,SCJ ) , combined with the 
similarity solution, will be used to speciate the 
detonation wave. 

 
Figure 3. Species concentrations in the TNT 
detonation products along the CJ isentrope. 

3. Phase Plane Model 
We assume that the charge is initiated at r = t = 
0, and consumed by a constant-velocity 
detonation, propagating at velocity WCJ  and 
satisfying the CJ jump conditions. The 
trajectory of the detonation front then obeys the 
linear relation: 
 
rCJ =WCJ ⋅ tCJ      (1) 
 
Under such circumstances, time and space 
coordinates are related 
 
dt = dr /WCJ      (2) 
 
so one may define a similarity variable [10-11]:  
 
x = r / rCJ      (3) 
 
One may then transform the partial differential 
equations of gas dynamics into ordinary 
differential equations of blast wave theory that 
are a function of the similarity variable x [18]. It 
is useful to define the following phase plane 
variables: 
 

F ≡ u
xWCJ

 & Z ≡ a2

x2WCJ
2   (4) 

 
As shown in the Appendix, the governing 
equations may be arranged into two coupled 
ordinary differential equations (ODE’s) for the 
dependent variables x and R as a function of the 
independent variable F:  
 

d ln x
dF

=
−1
F

x−2A(R) ⋅ZCJ − (1−F)
2

( j +1)x−2A(R) ⋅ZCJ − (1−F)
2  (5) 

 

d lnR
dF

=
j(1−F)

( j +1)x−2A(R) ⋅ZCJ − (1−F)
2  (6) 

 
These are supplemented by the equation of state 
function: A(R)  shown in Fig. 2. Here the 
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geometric index j equals 0, 1, or 2 for plane-, 
line- or point-symmetric flow, respectively.  
These equations are to be integrated from the CJ 
point in the phase plane: {FCJ =1/ (Γ+1) ; 
ZCJ = [Γ / (Γ+1)]

2 } where x = R = 1, to the 
singularity A located at {F = 0; Z = 1}. The 
solution curves x(F)  and R(F)  are presented in 
Fig. 4a for plane, line and point-symmetric 
flows; their corresponding curves are shown in 
the Z-F phase plane in Fig. 4b. The planar case 
represents a singular solution: Z = (1−F)2  lying 
along the D = 0 ; its solution can be found in 
[11]. 

(a) Solution Curves 

 
 

(b) Z-F Phase Plane 

 
 
Figure 4. Similarity solutions for planar (j = 0), 
cylindrical (j = 1) and spherical (j = 2) 
Chapman-Jouguet detonation waves in TNT; (a) 
R-F and x-F plane, (b) Z-F plane. 

4. Solution 

One can invert the solution of (5) yielding F(x)
; combined with the solution of (6) one finds: 
 
u / uCJ ≡U(x) = x ⋅F(x) / FCJ    (7) 
 
ρ / ρCJ = R(F(x))     (8) 
 
So, the velocity and density profiles come 
directly from the solution curves x(F)  and 
R(F) , respectively. The thermodynamic 
profiles come from those solutions, as expressed 
through the equation of state relations 
P = P(R),Θ =Θ(R), E = E(R), A = A(R),G =G(R)  
depicted in Fig. 2. The flow field profiles behind 
planar, cylindrical and spherical Chapman-
Jouguet detonations propagating in TNT 
charges are presented in Fig. 5. One can see that 
the velocity field goes to zero at x ~ 0.5  (the 
location of singularity A); inside that point, the 
flow is quiescent3 and the thermodynamic 
variables are constant. For spherical and 
cylindrical cases, the slope of the flow field 
profiles becomes infinite as one approaches the 
front. This is a consequence of the CJ boundary 
condition being located on the singular line 
D = 0 4. Also note that the isentropic index is not 
constant; it decreases to G(x < 0.5) ~ 0.8  behind 
the front. 
Using the temperature field T (x)  and the 
species functions Ci (T ) , one can calculate the 
species fields Ci (x) ; results are presented in 
Fig. 6 for the spherical case. The species 
concentrations change behind the front, in 
response to the temperature decay. Also notable 
is the electron concentration profile; this was 
computed from the carbon-graphite  
concentration and temperature Ershov [18]. 

                                                
3  As first predicted by G. I. Taylor in 1941 and 1950 [1]. 
4  Appendix, d lnF / d ln x = −( jZ +D) /D→∞  at D = 0  
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Figure 5. Similarity solution for planar (j = 0), cylindrical (j = 1) and spherical (j = 2) Chapman-Jouguet 
detonation waves in TNT. 
 

 
 
Figure 6. Species profiles in the TNT detonation 
products gases in a spherical CJ detonation. 
 
 

5. Discussion 
5.1 Mass and Energy Integrals 
It is important to check that the solution (Fig. 5) 
actually conserves mass and energy. To that end 
we define the mass integral: M  and total energy 
integral: E  according to the following: 
 

M j ≡ kj ρ j (r)r
2 dr

0

Rc

∫    (9) 

 

E j ≡ kj [
0

Rc

∫ ej (r)+ur, j
2 (r) / 2]ρ j (r)r

jdr          (10) 

 
where is the radius of charge, e is the relative 
energy and kj = 4π, 2π  and 1  for j = 2, 1 and 0 . 
The above integrals were computed with a 

Rc
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second-order quadrature method. Mesh refine 
studies indicated convergence when 104 mesh 
points were used. Results for a 1-kg TNT charge 
( Rc = 5.24556 cm / kg

1/3 ) are listed in Table 3. 
Mass errors ranged from −0.05% to + 0.009%  
(-0.5 g to +0.06 g). Energy errors ranged from 
0.14% to 0.18% (corresponding to 1.5 to 1.9 
cal/g). We consider this to be adequate 
accuracy, considering that the solution functions 
must be represented on a finite grid, and the 
slopes of the profiles are infinite at the front. 
Also shown in Table 3 are peak values of e, T 
and ρ  (on the computational mesh) compared 
to the CJ state. It is this flow field that will be 
used to initialize a one-dimensional (1D) blast 
wave calculation in §5.3. 
5.2 Constant-Gamma Solution 
In contrast to the current work, previous studies 
assumed the gas to be a perfect with a constant 
ratio of specific heats: γ ; also, since the entropy 
varied in the blast wave, the isentropic 
assumption was not applicable, and the total 
energy conservation of gas dynamics was 
needed. Under these circumstances, the phase 
space method gave a single ordinary differential 
equation [19] 
 
d logZ
d logF

=
2D+ j(γ −1)(1−F)F

jZ +D
         (11) 

 
whose solution produced an integral curve in the 
Z-F phase plane. This was completed by: 
 
d log x
d logF

=
−D
jZ +D

           (12) 

 
whose quadrature produced the auxiliary 
function x(F)  [19]. These are supplemented by 
the definitions 
 
u / uCJ = x F / FCJ   &  T /TCJ = x

2Z / ZCJ    (13) 
 

and the constant-gamma relations 
 
ρ / ρCJ = (T /TCJ )

1/(γ−1)  & p / pCJ = (ρ / ρCJ )
γ

 (14) 
 
Equations (11)-(12) were integrated from the CJ 
point to singularity A for γ = ΓCJ = 3.2586  and j 
= 2. The resulting solution profiles are presented 
in Fig. 7 and compared to the variable Γ  
solution of the previous section (Fig. 5). The 
two solutions are similar but different; all 
profiles for the constant Γ  case lie above the 
variable Γ  profiles; this results in irreducible 
errors in the global mass and energy integrals. 
Table 3 indicates a mass error of +1.1% and 
energy error of +1.9% for the constant-Γ  
solution. 
 

 
 

Figure 7. Comparison of the Γ=3.2586 solution 
versus the CJ-isentrope solution (S = 1.58 cal/g-
K) for the spherical case (j = 2). The constant-Γ 
model introduces a +1.1 % error in mass:M2  
and a +1.9% error in total energy: E2 . 
 
5.3 Species profiles in TNT blast wave in air 
The variable-Γ  similarity solution for a 
spherical CJ detonation wave in TNT was used 
to initialize a 1D gas dynamic code simulation. 
The species waveforms in the TNT detonation 
products gases at t = 0 and 2.5µs  are presented 
in Fig. 8. There we see the preponderance of 
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carbon graphite (9.9 moles), CO2 (8.9 moles) 
and CO (7.5 moles) over CH4 (4.5 moles) H2 (1 
mole) and H20 (1 mole) at the early stages of 
expansion of the detonation products gases at t 
= 2.5µs . 

 
Figure 8. Species waveforms in the TNT detonation 
products gases at t = 0 and 2.5 µs  in a spherical CJ 
detonation wave. 

8. Conclusions 
A phase plane model is proposed to describe 
flow fields bounded by CJ detonation waves in 
spherical, cylindrical and planar symmetries. 
The model is based on two coupled ODE’s for 
d ln x / dF  and d lnR / dF . The system is closed 
by thermodynamic relations: P(R), Θ(R) , E(R), 
A(R), G(R) and Ci (T )  corresponding to the 
equilibrium solution along the CJ isentrope for 
the considered thermodynamic system. In effect, 
they enforce energy conservation along the 
isentrope—thereby eliminating the need to 
employ the energy conservation equation of gas 
dynamics for this particular problem. The 
solution of the ODE’s prescribes the functions 
x(F) and R(F) , which then specify the velocity 
U(x) and density R(x)  profiles behind the front. 
Used in conjunction with the thermodynamic 
relations, they also prescribe the thermodynamic 
profiles: P(x), Θ(x), E(x), A(x) and Ci (x)  
behind the front. The predicted solution 
conserves global mass (within 0.05%) and 

global energy (within 0.2 %) on the 
computational grid employed for the integrals 
(104 cells).  
The present formulation reveals (brings to the 
surface) the central role played by the internal 
energy locus: u(T )  in the Le Chatelier plane 
(Fig. 1). Not only does it uniquely relate internal 
energy and temperature, it completely specifies 
the caloric relations of the system. And the CJ 
point itself possesses almost magical properties: 
(i) not only does it specify the jump conditions 
across the detonation front, (ii) it controls the 
mass and energy conservation behind the front, 
and (iii) it is itself a singularity of the ODE 
system—causing the slope of the flow field 
profiles to become infinite at the front. 
Such simulations provide unique insight into the 
thermodynamic states and species that create 
optical emissions from TNT fireballs. This 
approach should be used to study the structure 
and emission properties of detonation waves in 
other HE charges. 
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Appendix:  
Derivation of the Phase Plane Equations 
From our previous paper on the systematic 
exposition of the conservation equations of blast 
waves [14], one finds 
 

−D d lnF
d ln x

= D+ jZ = ( j +1)Z − (1−F)2        (A1) 

 

−D d lnh
d ln x

=
F
1−F

[D+ jZ − ( j +1)D]= jF(1−F)
 

(A2) 
where Z ≡ x−2Γg / h  with g = p / ρ0WCJ

2  and 
h = ρ / ρ0 , and where D = Z − (1−F)2  . Re-write 
in terms of F as the independent variable, and 
changing from h to R ≡ ρ / ρCJ  on finds: 

 
d ln x
dF

=
−1
F

Z − (1−F)2

( j +1)Z − (1−F)2
          (A3) 

 
d lnR
dF

=
j(1−F)

( j +1)Z − (1−F)2
          (A4) 

 
Now express Z by Z = x−2A ⋅ZCJ  where 
A ≡ (a / aCJ )

2  denotes the non-dimensional 
sound-speed squared and is a function of R from 
the thermodynamic solution along the CJ 
insentrope (i.e., A = A(R) as shown in Fig. 2). 
Then the above become two coupled ordinary 
differential equations: 
 
d ln x
dF

=
−1
F

x−2A(R) ⋅ZCJ − (1−F)
2

( j +1)x−2A(R) ⋅ZCJ − (1−F)
2     (A5) 

 
d lnR
dF

=
j(1−F)

( j +1)x−2A(R) ⋅ZCJ − (1−F)
2          (A6) 
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These are to be integrated over the domain 
0 < F ≤ FCJ .  
The planar case (j = 0) is singular; the integral 
curve is the D = 0  line, thereby specifying a 
closed form solution [11]: 

Z = (1−F)2   &  x = 1− (Γ+1)FCJ / 2
1− (Γ+1)F / 2

           (A7) 

 
Tables 

Table 1 
 Quadratic fits to the TNT locus: 

 
 Region i 

   

Fi
t 
4 

 

 

 

 

Fi
t 
5 

 

 

  

 
Table 2 
CJ and UV states for TNT ( ρ0 =1.654 g / cc ) 

Variable CJ State UV State 

p(kbar)  197.59759 90.13 

ρ (g / cm3)  2.1616 1.654 

e(cal / g)* 1,352.46 1,064.8 

u(cal / g)  273.16 -66.5 

T (K )  3,237.875 2,866.9 

s(cal / g−K )  1.58447 1.623 

ur (km / s)  1.68595 0 

W (km / s)  7.18 0 

a(km / s)  5.4939 4.0593 

Γ =WCJ / ur,CJ −1  3.2586 — 
* e ≡ u+1,131  
 
 
 

Table 3 
Solution Accuracy versus Theory for TNT 
Detonation Waves 
 
 
Varia
ble 

 
Theo

ry 

Similarity Solution Γ=3.2
5 

j = 0 j = 1 j = 2 j = 2 
M0  
(kg) 

1.000
0 

1.000
06 

0.999
47 

1.000
09 

1.011
65 

E0  
(cal/g) 

1,064
.8 

1,063.
3 

1,062.
3 

1,062.
9 

1,085.
5 

peak e 
(cal/g) 

1,404
.8 

1,402.
5 

1,391.
3 

1,386.
9 

1,387.
6 

peak 
T (K) 

3,237
.9 

3,227.
4 

3,216.
5 

3,212.
3 

3,213.
0 

peak 
ρ  
(g/cc) 

2.161
6 

2.161
2 

2.148
5 

2.140
5 

2.141
5 

 

ui (T ) = aiT
2 + biT + ci

ai bi ci
300 < T < 2357 6.9982×10−5 0.16051 −1,131

2118 < T < 3700 35.227×10−5 −1.2316 579


